
Section 16.4:

Green’s Theorem



What We’ll Learn In Section 16.4

1. Green’s Theorem

2. Green’s Theorem in Reverse

3. Extended Version of Green’s Theorem



1. Green’s Theorem

Def:  Let  C  be a curve in  ℝ2. 

1.  C  is simple if it doesn’t cross itself (except 

possibly at the endpoints of the curve)

2.  C  is closed if the endpoints of the curve are the 

same.
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1. Green’s Theorem

Notes:

1) The left side (above) is the same as   Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 where  

Ԧ𝐹 =< 𝑃 𝑥, 𝑦 , 𝑄 𝑥, 𝑦 >

2) The notation  ׯ𝑃𝑑𝑥 + 𝑄𝑑𝑦 means you are 

integrating along a simple closed curve that is 

positively oriented



1. Green’s Theorem

Notes:

3)  𝜕𝐷 stands for the boundary of region  D  (i.e. the 

curve  C) and so Green’s Theorem can be written as…



Ex 1: Evaluate   𝑥4 𝑑𝑥 + 𝑥𝑦 𝑑𝑦 , where  C  is the triangular curve consisting of 

the line segments from (0,0) to (1,0), from (1,0) to (0,1), and from (0,1) to (0,0).

1. Green’s Theorem
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Ex 2: Evaluate  ׯ 3𝑦 − 𝑒sin 𝑥 𝑑𝑥 + 7𝑥 + 𝑦4 + 1 𝑑𝑦, where  C  is the 

circle  𝑥2 + 𝑦2 = 9.

1. Green’s Theorem

C



2.  Green’s Theorem In Reverse



2.  Green’s Theorem In Reverse

• Using the fact that   1 𝑑𝐴 = 𝐴(𝐷) , we can use 

Green’s Theorem to compute areas by doing line 

integrals!

• There are many choices for P and Q…

D



2.  Green’s Theorem In Reverse

This gives many different formulas for the area of D ...

𝑃 𝑥, 𝑦 = 0

Q 𝑥, 𝑦 = 𝑥

𝑃 𝑥, 𝑦 = −𝑦

Q 𝑥, 𝑦 = 0

𝑃 𝑥, 𝑦 = −0.5𝑦

Q 𝑥, 𝑦 = 0.5𝑥



Ex 3: Use Green’s Theorem (in reverse) to find the area enclosed by the ellipse  
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1.  

2.  Green’s Theorem In Reverse

Planimeter?



3.  Extended Version of Green’s Theorem

Ex 4: Evaluate  ׯ 𝑦2 𝑑𝑥 + 3𝑥𝑦 𝑑𝑦,  where  C  is the boundary of the 

semiannular region  D  in the upper half-plane between the circles  𝑥2 + 𝑦2 = 1
and 𝑥2 + 𝑦2 = 4. 
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3.  Extended Version of Green’s Theorem

Green’s Theorem can be extended to regions that are 

not simply connected (regions with holes in them). 

How?

First, positively orient the hole(s).

Then…
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3.  Extended Version of Green’s Theorem

Ex 5: If  Ԧ𝐹 =< −
𝑦

𝑥2+𝑦2
,

𝑥

𝑥2+𝑦2
> ,  show that  Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 = 2𝜋 for every 

positively oriented simple closed path that encloses the origin.     
C


